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LETTER TO THE EDITOR 

Branched polymer approach to the structure of lattice 
animals and percolation clusters 

S Alexandert§, G S GresttS, H Nakanishit and T A Witten JrtS 
t Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 
$ Corporate Research Science Laboratory, Exxon Research and Engineering Company, 
Annandale, New Jersey 08801 

Received 4 January 1984 

Abstract. We treat the percolation problem as a solution of randomly branched chains, 
and argue that such chains are swollen by a three-body repulsion acting only within a 
connected cluster. This type of repulsion should not be subject to the screening effects 
which inhibit ordinary repulsions. The repulsion becomes relevant below six dimensions. 
We estimate its effect on the size of a cluster in analogy with Flory’s argument for the 
swelling of linear chains. Above six dimensions the cluster size scales as mass to the 
power, as with isolated branched chains in high dimensions. 

The purpose of this letter is to present a coherent picture of percolation and lattice 
animals from a polymer point of view. The field theory has been worked out in detail 
by Lubensky and Isaacson (1979). However, as for the self-avoiding chains, this is 
not always the most convenient language to answer all questions. de Gennes (1980) 
has pointed out that animals and percolation clusters can be regarded as properties 
of branched polymers and Daoud and Joanny (1981) have worked out some of the 
implications of applying a Flory self-consistent approach. This is the point of view we 
shall adopt. Our main purpose is to work out the implications and internal logic of 
this point of view and its relationship to other approaches. We believe the resulting 
picture is of sufficient interest to merit a detailed description. 

Our starting point is the classical Stockmayer theory of gelation (Stockmayer 1943, 
1944 and de Gennes 1979) and branched polymers (Zimm and Stockmayer 1949) 
which is valid on a Cayley tree (or for d =CO). In polymer language this leads to (de 
Gennes 1980) 

N - R ~ ;  D s  1 / ~ , , = 4 ,  (1) 

where R is the radius of a branched polymer of mass N, D is the Hausdorff 
dimensionality. We write vbp to distinguish this ‘polymer’ index from the index v for 
the connectivity length tp discussed below. The same theory also predicts a gelation 
transition when the bond probability p exceeds a certain threshold pc. For p > pc an 
infinite cluster is formed with a connectivity coherence length tp and the classical index, 

z p  - ( P - PJ-”;  v=1.  2. ( 2 )  
The fraction P, of sites in the infinite cluster increases according to P m - ( p - p J P  
with p = 1. 

5 Permanent address: The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel. 
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The lattice animal and percolation problems are essentially indistinguishable in this 
high-dimensional limit (Harris and Lubensky 1981). This can be seen directly by 
looking at the generating function for the cluster distribution in the spirit of the 
Kasteleyn-Fortuin (1969) expansion (Fortuin and Kasteleyn 1972). The probability of 
finding any specific connected structure as an animal is proportional to 

p , a p c ;  P < I ,  (3)  
where c is the number of connected internal bonds. For percolation one has an 
additional factor disconnecting the boundary 

P p a P C ( 1  -P>b (4) 

where b is the number of disconnected boundary bonds. Now for any fractal object 
( D < d )  almost all sites are perimeter sites. This would seem to imply that b is 
proportional to c. In fact, for ensemble averages, (b )a (c )  strictly (up to an additive 
constant); however, for any given cluster, there is in general a correction to b a  c. 
These corrections are due to self-contacts i.e. to disconnected bonds between sites 
belonging to the same cluster. The number Pz of such contacts is 

P,(N) = N ~ ~ ( N ) ~  a W d l D .  ( 5 )  

If D = 4  the number of self-contacts becomes negligible for d >  8. One can then 
assume b proportional to c ( b  = ac)  and equation (4) becomes 

P p [ P ( l  -p)"IC; d >  8, ( 6 )  

indistinguishable from the expression for animals (equation (3)) except for replacing 

Below this dimensionality there are important differences, because the effect of 
interactions become important (Harris and Lubensky 1981). There are two types of 
interaction. First, as in the case of linear polymers, one has repulsive excluded volume 
effects; two monomers cannot occupy the same site. This corresponds to a repulsive 
monomer-monomer interaction with a leading term quadratic in the density. The 
interaction cannot distinguish between monomers belonging to different polymers. As 
a result it is screened at high densities (above c* where polymers begin to overlap). 

For linear polymers this result is well known. We know that self-avoiding chains 
in solution at concentrations c >> c* are Gaussian (for d > 2) while the single isolated 
chain is not. Following de Gennes (1980) and Daoud and Joanny (1981), we argue 
that this effect dominates the difference between animals and percolation clusters. 
Excluded volume effects are dominant for animals but are screened by the high density 
in the percolation problem as they are for linear chains in solutions. 

The second type of interaction is peculiar to the branched polymer problem and 
is more subtle. In a branched object, one obviously needs a three-body term to generate 
the branch points. This is clear in the Stockmayer (1943, 1944) approach. In the 
field-theory approach this is done by the cubic ( 4 3 )  term in the free energy functional. 
The effect on the density p is attractive. The most obvious effect is to generate explicit 
three-body correlations in the branched clusters. These attractive effects are included 
when one starts from a 'free' branched polymer ( D  = 4). When there are geometrical 
constraints (i.e. for finite d )  the branching is no longer free. If one maps the Stockmayer 
construction, generated on a tree, onto a finite-dimensional lattice, allowing multiple 
occupancy, one finds new, fortuitous branching points which were not generated by 
the original construction. (A simple Cb3 attraction would give an extra statistical weight 

P by P(1-P)". 
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for each of these fortuitous contacts, thus distorting the original ensemble. To com- 
pensate for this unwanted attraction and restore the original ensemble, an extra 
three-point repulsion is necessary (Lubensky and Isaacson 1979) in a finite-dimensional 
space.) The extra repulsion produces a three-body interaction proportional to p3 .  

From this discussion, it is not clear how this effect can be distinguished from the 
ordinary excluded volume effects. The essential point is that the geometrical inhibitions 
of the branching process imply an interaction only between monomers belonging to 
the same connected cluster. This repulsion is different from excluded volume effects, 
which cannot distinguish between monomers belong to different clusters. In a solution 
which screens the excluded volume repulsions, one is still left with a correlated repulsion 
between monomers belonging to the same cluster which has a leading three-body term. 
The result is an important difference between percolation and solutions of linear chains. 
For the latter, one only has excluded volume interactions which are screened. Thus 
the chains in solution are free (i.e. Gaussian) at least for d > 2. For the branched 
chains there remains an unscreened ‘branching’ three-body repulsion. 

To estimate the effect of these interactions on chain dimensions we consider first 
a single branched polymer. There is no screening. The dominant interaction is therefore 
ihe excluded volume two-body repulsion which becomes relevant below d = 8 (equation 
( 5 ) ) .  A Flory estimate for the free energy gives 

F, = R ~ / N ‘ / ~  + N ~ / R ~ .  

va = 51 2( d + 2 ) .  

(7) 

(8) 

Minimising Fa gives (Issacson and Lubensky 1981) 

For percolation, the excluded volume effects are screened. But each cluster still has 
the internal ‘branching’ repulsion and therefore: 

Fp = R 2 / N I f 2  + N 3 /  R2d.  

vbp = 7/4( d + 1). 

(9) 

(10) 

This gives 

The upper critical dimensionality is d = 6. Thus percolation clusters are ideal ( v b p  = f )  
above d = 6 in the same way that isolated linear chains are Gaussian above d = 4. The 
upper critical dimensionality in solution is six (rather than four) because of the 
unscreened ‘branching’ repulsion. 

A curious feature of these Flory expressions was noted by Daoud (1982). For 
isolated linear chains the Flory expressions have a lower critical dimensionality dl = 1. 
That is, for d = 1 the Hausdorff dimension D becomes equal to the dimension of space 
d. This reflects the fact that the intrinsic dimensionality of a linear chain is one, so 
that non-intersecting chains cannot be embedded in a space of lower d. For solutions 
one is left with a rather unsatisfactory situation because screening of the excluded 
volume repulsions breaks down at d = 2. 

For branched chains both equations (8) and (10) give (Daoud 1982), 

d , v = l ;  dl = $. (11) 
Indeed, dl = $ even for a general n-body repulsion?, unlike linear chains where dl = 1 
generally (Daoud 1982). 

t If one replaces the interaction term in (9) by an n-body repulsion ( N ” / R ‘ ” - ’ ’ d )  one finds v$,) = 
(2n+1) /2[ (n- l )d+2]  and (11) still holds. 
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However, there is no obvious topological interpretation of the value $, in contrast 
to the linear chain case. Branched chains are complex objects and, in contrast to linear 
chains, have no obvious intrinsic dimensionality. Still one can define an embedding 
dimension de as the lowest dimension of a Cartesian space into which a non-intersecting 
cluster can be packed by rotating bonds. An obvious, but trivial, upper bound on de 
is given by the Hausdorf€ dimension D. A lower bound is the fracton dimension d 
defined recently (Alexander and Orbach 1982), which determines the diffusion volume 
explored by a random walk and the state counting in the relevant Hilbert space. A 
random walk confined to an embedded object cannot explore more sites than are 
available in the embedding space. Empirically it was found (Alexander and Orbach 
1982) that the fracton dimension for percolation clusters has the universal value $ for 
percolation clusters generated in two and higher dimensions. Recent computer experi- 
ments (Pandey and Stauffer 1983 and Havlin and Ben Avraham 1983) have tended 
to enhance the confidence in this finding. The meaning of this universality has been 
discussed (Rammal and Toulouse 1983, Alexander 1983, Leyvraz and Stanley 1983) 
but is not really understood. The independent result (1 1) suggests that $ is in some 
sense the intrinsic dimensionality of branched clusters and therefore determines both 
the fracton dimension d and the embedding dimension de. 

Following through the analogy between percolation and semi-dilute solutions leads 
to a rather rich picture. We can generalise slightly the standard percolation model, 
which corresponds to a melt, and consider a ‘semi-dilute’ situation with monomer 
concentration c. At short distances a given branched polymer sees only itself and 
therefore has animal indices, equation (8). The crossover determines a de Gennes 
‘blob’ size 

(12) ~ ~ l l ~ n - - d )  = c ;  tbK C-5/(3d-4)  

For 8 3 d 3 6 one then has an ideal branched chain of blobs with vbp = $. The size of 
the clusters depends on c 

P( N) a c - + N I / ~  (13) 
where, using (8) and (12) 

x = ( 8  - d) /2 (3d  -4), 8 2 d 3 6 .  

The generalisation to d < 6 is straightforward. 
For d > 6 we predict D = 4, in constrast to the scaling prediction D = d - p /  v of 

Kapitulnik et a1 (1983). This discrepancy may be traced to the breakdown of hyperscal- 
ing above the upper critical dimension (Aharony et al 1983). The same type of 
breakdown occurs at an ordinary phase transition of, e.g., an Ising ferromagnet. For 
d > 4, the spin density correlation function (s(O)s( r ) )  E M2( r )  decreases at large dist- 
ance to the square of the magnetisation M 2 .  At T f T,, M 2 ( r )  goes as r2-d at short 
distances, and at large distances the difference M 2 (  r )  - M 2  decays exponentially with 
a characteristic decay length 6 - I T -  TJ112. This 6 is independent of-and much 
larger than-the distance rl - 1 T -  Tcl-l’(d-2) at which the extension of the short- 
distance behaviour of M 2 (  r )  would cross M2. Thus over most of the correlation volume 
the M 2 (  r )  is nearly constant. It is this fact which makes mean-field theory applicable 
in high dimensions. 

The breakdown of hyperscaling occurs similarly in percolation, and the various 
lengths in the problem have an appealing interpretation in terms of the geometry of 
the infinite cluster. The infinite cluster has an average density P ( p )  which increases 
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linearly in p - p c ,  so that j3 = 1 (cf equation (2)). The structure near a monomer of 
this cluster is that of an ideal randomly-branched polymer, with D = 4. Thus the 
density p ( r )  of infinite cluster averaged over a distance r around such a monomer is 
given by p(  r )  - r4-d ,  for r sufficiently small. For large r, p (  r )  approaches its asymptotic 
limit P( p ) .  This crossover of density occurs at a distance r = (d given by .$d = P( p )  - 
( p - p , ) .  The decay of p ( r )  to P ( p )  is not governed by this length scale, but by a much 
longer one. To see this, we consider the density p ’ ( r )  which is connected to the origin 
within distance r. This density is also that of a randomly branched polymer, and thus 
it falls off as r4-d.  But this density need not become constant beyond r = td, since the 
density P( p )  of monomers on the infinite cluster need not be connected to the origin 
within the distance r. Beyond some distance 8, the monomers of pf intersect the 
‘backbone’ of the infinite cluster-i.e. those monomers connected to infinity by two 
disjoint paths. The probability that a monomer on the infinite cluster is connected to 
infinity by a second path is P( p ) ;  thus the density of backbone points is of order P( p ) 2  
for d 3 6 .  At the distance r = t p  the pf monomers intersect the backbone with a 
probability of order 1: 

P ( p ) * g =  1. 

Thus 5, scales as ( p  - pC) - ’ I2  as expected for the correlation length for percolation. 
At scales of the order of tP, many parts of the infinite cluster interpenetrate but do 
not touch. The number of interpenetrating parts is of order p ( t d ) / p ‘ ( & ) -  
( p - p c ) ( d - 6 ) / ( 2 d - X )  . A third length of interest is the distance between tri-connected 
‘nodes’ of the structure. These are the points connected to infinity by three disjoint 
paths, and their density is thus P ( P ) ~ .  The average distance between them is thus 
5, - ( p - p c ) - 3 / d .  But the typical distance between two chemically adjacent nodes is of 
order 5,. The three lengths t d ,  5, and 6, all scale as ( ~ - p ~ ) - ’ ’ ~  as d approaches six 
from above. They all have the same scaling exponent below six dimensions as hyper- 
scaling sets in. 

The three-length-scale picture for the infinite cluster also emerges in a semi-dilute 
solution of linear chains at concentration c above four dimensions. Here the chains 
have Hausdorff dimension D = 2, and the relevant contacts are between two monomers 
rather than between three. The smallest length is the blob size - c ’ ’ ( ~ - ~ )  , corresponding 
to ‘density’ length &. The density of contact points of different chains is c2  and thus 
these points are spaced at a distance ( , - c - ~ ’ ~ .  Finally, the distance 6, between 
(interchain) contacts on a given chain obeys c t ; ~  1,  so that 6,- c - ~ ’ ~ .  This is the 
familiar Edwards length (Edwards 1965). 

The argument of Kapitulnik er a1 (1983) giving D = d - p /  v relies on the propor- 
tionality of &, 6, and 5,. Thus it is clear that the argument does not apply above the 
upper critical dimension. 

We would like to thank P Pincus and M Daoud for many helpful discussions. SA 
wishes to acknowledge the hospitality of Exxon Corporate Research Laboratory during 
his visit while some of this work was done. This work was supported in part by NSF 
grant number PHY 77-27084. 
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